Nonholonomic systems as restricted Euler-Lagrange systems

نویسندگان

  • T. Mestdag
  • M. Crampin
چکیده

We recall the notion of a nonholonomic system by means of an example of classical mechanics, namely the vertical rolling disk. For a general mechanical system with nonholonomic constraints, we present a Lagrangian formulation of the nonholonomic and vakonomic dynamics using the method of anholonomic frames. We use this approach to deal with the issue of when a nonholonomic system can be interpreted as the restriction of a special type of Euler-Lagrange system. M.S.C. 2010: 34A26, 37J60, 70G45, 70G75, 70H03.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Passivity-Based Distributed Control of Networked Euler-Lagrange Systems With Nonholonomic Constraints

In this report, we study the distributed control problem of networked Euler-Lagrange(EL) systems with nonholonomic constraints. The reason for singling out this particular topic is that distributed control of networked Euler-Lagrange systems with nonholonomic constraints captures a large class of contemporary engineering problems, such as rendezvous problem and formation problem. We propose a n...

متن کامل

The Euler – Lagrange Equations for Nonholonomic Systems

This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conse...

متن کامل

Discrete Nonholonomic LL Systems on Lie Groups

This papers studies discrete nonholonomic mechanical systems whose configuration space is a Lie group G Assuming that the discrete Lagrangian and constraints are left-invariant, the discrete Euler–Lagrange equations are reduced to the discrete Euler–Poincaré–Suslov equations. The dynamics associated with the discrete Euler–Poincaré–Suslov equations is shown to evolve on a subvariety of the Lie ...

متن کامل

Discrete Nonholonomic Lagrangian Systems on Lie Groupoids

This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it ...

متن کامل

Geometric Discretization of Nonholonomic Systems with Symmetries

The paper develops discretization schemes for mechanical systems for integration and optimization purposes through a discrete geometric approach. We focus on systems with symmetries, controllable shape (internal variables), and nonholonomic constraints. Motivated by the abundance of important models from science and engineering with such properties, we propose numerical methods specifically des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011